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Abstract. Regional-scale air pollution models are routinely being used world-wide for research, forecasting air quality, and 

regulatory purposes. It is well known that there are both reducible and irreducible uncertainties in the meteorology-atmospheric 

chemistry modeling systems. Inherent or irreducible uncertainties stem from our inability to properly characterize stochastic 10 

variations in atmospheric dynamics and from the incommensurability associated with comparisons of the volume-averaged 

model estimates with point measurements. Because stochastic variations in atmospheric dynamics and emissions forcing 

influencing the air pollutant concentrations are difficult to explicitly simulate, one can expect to find a percentile value from 

the distribution of measured concentrations to have much greater variability than that of the model. This paper presents an 

observation-based methodology to determine the expected errors from regional air quality models even when the model design, 15 

physics, chemistry, and numerical analysis techniques as well as its input data were “perfect”. To this end, the short-term 

synoptic-scale fluctuations embedded in the daily maximum 8-hr ozone time series are separated from the longer-term forcings 

using a simple recursive moving average filter. The inherent variability attributable to the stochastic nature of the atmosphere 

is determined based on 30+ years of historical ozone time series data measured at various monitoring sites in the contiguous 

United States.  The results reveal that the expected root mean square error at the median and 95th percentile is about 2 ppb and 20 

5 ppb, respectively, even for “perfect” air quality models driven with “perfect” input data. Quantitative estimation of the limit 

to the model’s accuracy will help in objectively assessing the current state-of-the-science in regional air pollution models, 

measuring progress in their evolution, and providing meaningful and firm targets for improvements in their accuracy relative 

to ambient measurements.  

1 Introduction 25 

Confidence in model estimates of pollutant distributions is established through direct comparisons of modeled concentrations 

with corresponding observations made at discrete locations for retrospective cases. It is well known that there are both reducible 

and irreducible uncertainties in the meteorology-atmospheric chemistry modeling systems. Pinder et al. (2008) discussed the 

reducible (i.e., structural and parametric) uncertainties that are attributable to the errors in model input data (e.g., meteorology, 

emissions, initial and boundary conditions) as well as our incomplete or inadequate understanding of the relevant atmospheric 30 

processes (e.g. chemical transformation, planetary boundary layer evolution, transport and dispersion, modeling domain, grid 

resolution, deposition, rain, clouds).  Inherent or irreducible uncertainties stem from our inability to properly characterize the 
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stochastic variations in atmospheric dynamics (Gilliam et al., 2015), from the incommensurability associated with comparing 

the volume-averaged model estimates with point measurements (e.g., McNair et al., 1996; Swall and Foley, 2009), and our 

inability to precisely quantify the space and time variations in atmospheric emissions and other atmospheric variables and 

processes. Also, without completely knowing the 3-dimensional initial physical and chemical state of the atmosphere, its future 

state cannot be simulated accurately (Lamb, 1984; Lamb and Hati, 1987; Lewellen and Sykes, 1989; Pielke, 1998; Gilliam et 5 

al., 2015). Given the presence of the irreducible uncertainties, precise replication of observed concentrations or their changes 

by the models cannot be expected (Dennis et al., 2010).  

 

Whereas an air quality model’s prediction represents some time/space-averaged concentrations, an observation at any given 

time at a monitoring location reflects an individual event or specific realization out of a population that will almost always 10 

differ from the model estimate even if the model and its input data were perfect (Rao et al., 1985).  Consequently, comparisons 

of modeled and observed concentrations paired in space and time indicate biases and errors in simulating absolute levels of 

pollutant concentrations at individual monitoring sites (Porter et al., 2015). The scientific discussion on modeling uncertainty 

reduction goes back more than three decades with the current practice including data assimilation, ensemble modeling, and 

model performance evaluation (e.g., Fox, 1981, 1984; Lamb, 1984; Pielke, 1998; Lewellen and Sykes, 1989; Lee et al., 1997; 15 

Carmichael et al., 2008; Hogrefe et al., 2001a, 2001b; Grell and Baklanov, 2011; Gilliam et al., 2006; Baklanov et al., 2014; 

Bocquet et al., 2015). While ever-improving process knowledge and increasing computational power will continue to help 

reduce the structural and parametric uncertainties in air quality models, the inherent uncertainty cannot be eliminated because 

our inability to properly characterize the stochastic nature of the atmosphere will always result in some mismatch between the 

model results and measurements; this could lead to speculation on the inferred accuracy of the future states simulated by the 20 

regional air quality models (Porter et al., 2015; Astitha et al., 2017; Luo et al., 2019).  

 

In most applications of regional-scale air quality models, statistical metrics such as bias, root mean square error (RMSE), 

correlation, index of agreement are being used to judge the quality of model predictions and determine if the model is suitable 

for forecasting or regulatory purposes (e.g., Fox, 1981, 1984; Solazzo et al., 2011; Appel et al., 2012; Simon et al., 2012; Foley 25 

et al., 2014; Ryan et al., 2016; Emory et al. 2016; Zhang, 2016; U.S. EPA, 2018).  While significant improvements in the 

formulation, physical and chemical parameterizations, and numerical techniques have been implemented in atmospheric 

models over the past three-decades, it is not clear if the improvement claimed in the model’s performance relative to the routine 

network measurements is statistically significant based on these metrics (Hogrefe et al., 2008).  Also, no assessments have 

been made to date on the errors to be expected in regional-scale air quality models.  To this end, we analyzed the daily 30 

maximum 8-hr (DM8HR) ozone data at monitoring locations across the contiguous United States (CONUS) during the 1981-

2014 time period along with the 21-year fully coupled WRF-CMAQ simulations covering the 1990-2010 period as detailed 

below. 
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2 Data and Methods 

Ground-level DM8HR ozone data covering the CONUS during May to September in each year were obtained from the U.S. 

Environmental Protection Agency’s (EPA) Air Quality System (AQS) (see https://github.com/USEPA/CMAQ/tree/5.0.2). A 

valid ozone season consists of at least 80% data coverage during May to September at each station. A total 185 monitoring 

stations with at least 30 valid years (to provide enough variety of synoptic conditions, denoted hereafter as 30+ in this paper) 5 

from the year 1981 to 2014 are analyzed. Also, fully coupled WRF-CMAQ model simulations over the CONUS for the 1990-

2010 period were utilized in this study to demonstrate a new perspective on model performance evaluation.  Time-varying 

chemical lateral boundary conditions are nested from the 108 km hemispheric WRF-CMAQ simulation from 1990 to 2010 

(Xing et al., 2015). Evaluation of the 21-year long WRF-CMAQ simulation using 36-km grid can be found in Gan et al. (2015). 

 10 

It has been shown that time series of the daily maximum 8-hr ozone concentrations contain fluctuations operating on different 

time scales, reflecting the short-term forcing induced by the passage of weather systems across the country and long-term 

forcing induced by emissions, El-Nino-Southern Oscillation (ENSO), climate change, and other slow-varying processes such 

as seasonal and sub-seasonal variations in the atmospheric deposition and stratosphere-troposphere exchange processes (Rao 

et al., 1996, 1997; Vukovich, 1997; Hogrefe et al., 2000; Porter et al., 2015; Astitha et al., 2017).  Variations in ambient ozone 15 

can be thought of comprising of the baseline of pollution that is created by various emitting sources and modulated by the 

prevailing synoptic weather conditions (Rao et al., 2011).  Thus, the level of the baseline (BL) concentration and the strength 

of the synoptic component (SY) should be viewed as the necessary and sufficient conditions for how high ozone levels can 

reach on a given day (Astitha et al., 2017). Scale separation can be achieved by applying filtering methods such as the Empirical 

Mode Decomposition (Huang et al., 1998), Elliptic filter (Poularika, 1998), Kolomogorov-Zurbenko (KZ) filter (Rao and 20 

Zurbenko, 1994), Adaptive Filter Technique (Zurbenko, et al., 1996), and Wavelet (Lau and Weng, 1995). Because Empirical 

Mode Decomposition and KZ filter yielded similar results for the DM8HR time series data, only the results from the KZ filter 

are presented here. Further, the KZ filtering is a simple method and works well in the presence of missing data (Hogrefe et al., 

2003).  In this study, we used the KZ(5,5) with a window size of 5 days and 5 iterations in the same manner as in Porter et al. 

(2015), Rao et al. (2011), and Luo et al. (2019). The size of the window and the number of iterations determine the desired 25 

scale separation. The KZ(5,5) filtering process helps separate the synoptic-scale weather-induced variations embedded in the 

May-September DM8HR time series data (short-term component, noted as SY) from the long-term baseline component (noted 

as BL).  

𝐵𝐿(𝑡) = 𝐾𝑍(5,5)                                          (1)   

𝑆𝑌(𝑡) = 𝑂3(𝑡) − 𝐾𝑍(5,5)                          (2) 30 

𝑂3(𝑡) = 𝑆𝑌(𝑡) + 𝐵𝐿(𝑡)                               (3) 

 

where O3(t) is the original time series of the observed DM8HR ozone concentration, BL(t) is the baseline component and 

SY(t) is the synoptic component at any given time.  Because we are working with daily maximum 8-hr ozone data, the Nyquist 

interval is 2-days, indicating that the dynamical features having time scales less than 2 days (e.g., intra-day forcing from fast 35 
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changing emissions and chemical transformations, boundary layer evolution, diurnal forcing due to night vs. day differences) 

are not resolvable in this analysis (see Fig. 2 in Dennis et al., 2010). The 50% cut-off frequency for the KZ(5,5) is ~24 days, 

and, hence, time scales less than those associated with synoptic-scale weather fluctuations are embedded in the short-term or 

SY forcing.  The KZ filtering is applied to both DM8HR observations and modeled DM8HR time series.  Once the baseline is 

separated from the original DM8HR time series from all monitoring stations, then the synoptic forcing in the historical ozone 5 

time series data is used to estimate the variability in ozone concentrations that can be expected because of the chaotic/stochastic 

nature of the atmosphere by taking into account the relationship between the strength of synoptic forcing and mean of baseline 

ozone at each location over CONUS.  This methodology was applied to both measured and modeled ozone concentrations (see 

details in Luo et al., 2019).  Whereas the objective of Luo et al. (2019) was on transforming the deterministic modeling results 

into a probabilistic framework for assessing the efficacy of different emission control strategies in achieving compliance with 10 

the ozone standard, this paper is aimed at quantifying the errors to be expected at each monitoring site over CONUS even from 

“perfect” regional ozone models driven with “perfect” input data from the ever-present stochastic nature of the atmosphere. 

3 Results and Discussion 

3.1 Analysis of ambient ozone data 

To illustrate the concept of the ozone baseline, DM8HR time series measured in 2010 at Altoona, PA is presented in Fig. 1a 15 

together with the embedded baseline concentration as extracted by the KZ(5,5) filter. It is evident that high ozone levels are 

always associated with the elevated baseline. The difference between the raw ozone time series and baseline, denoted as the 

short-term or synoptic forcing (SY), is displayed in Fig. 1b along with time series of white noise.  By superimposing AR(1) 

process on the ozone baseline, Rao et al. (1996) demonstrated that the number of observed ozone exceedances above a given 

threshold at a monitoring site can be reproduced. A comparison between the SY component and white noise process, presented 20 

in Fig. 1b, reveals that the SY component having finite variance and zero mean resembles near-stochastic process. Hence, the 

baseline concentration is to be viewed as the deterministic part and SY is considered the stochastic component in the ambient 

ozone time series. 

 

Once the scale separation is achieved with the KZ(5,5), we superimposed the SY forcing imbedded in 30+ years of historical 25 

DM8HR ozone time series measured at a given location on the baseline component of the ozone time series at that location to 

generate 30+ reconstructed or pseudo ozone distributions. Illustrative results at a suburban location in Altoona, PA are 

presented for 2010 base year in Fig. 2a; it should be noted that the linear relationship between the strength of SY and the 

magnitude of the BL has been taken into account in generating 30+ years of adjusted SY forcing as illustrated in Luo et al. 

(2019).  As expected, there is excellent agreement between the average of 30+ values (solid blue line) and observed ozone in 30 

2010 at each percentile of the concentration distribution function (red line). Also, the original cumulative distribution function 

(CDF) in 2010 (red line) is constrained within the 30+ CDFs of pseudo-observations (Fig. 2a); note, it is equally likely for any 
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of the 30+ CDFs to occur due to the stochastic nature of the atmosphere even though the individual event in 2010 yielded the 

CDF shown in red.  As mentioned before, ozone mixing ratio at any given probability point on the red line in Fig. 2a reflects 

a specific event while ozone values at the same probability in different CDFs (light blue lines) reflect the population stemming 

from the chaotic nature of the atmosphere. In other words, there are 30+ dynamically consistent ozone time series attributable 

to the 2010 emissions loading for examining the inherent variability. It is evident in Fig. 2a that there is larger variability at 5 

the lower and upper percentiles than that in inter-quartile range, revealing that the tails of the concentration distribution function 

are subject to large inherent uncertainty. Using these 30+ pseudo-observation ozone mixing ratios and the actual observed 

ozone values at each percentile, statistical metrics such as Bias, RMSE, coefficient of variation (CV=standard deviation/mean), 

normalized mean error (NME) and normalized mean bias (NMB) are presented in Fig. 2b and c. As expected, the lower and 

upper tails of the distribution are prone to large errors. These results demonstrate the presence of larger natural variability at 10 

the upper 95th percentile, which is of primary interest in regulatory analyses. 

 

Ozone time series at 185 monitoring stations covering CONUS, having at least 80% data completeness, are analyzed in the 

above manner and the results are displayed as box plots in Fig. 3. Note the presence of large variability in the CV, NME, and 

NMB, and Bias at lower and upper percentiles (Fig. 3). The RMSE expected for the ozone mixing ratios in the interquartile 15 

range is ~1.5 ppb, but it is >5 ppb for the upper 95th percentile (Fig. 3b). The spatial distribution of RMSE at the 50th and 

95th percentiles is displayed in Figures 4a and 4b, respectively.  The RMSE at the upper 95th percentile is very high at some 

monitoring sites in California and Michigan (Fig. 4b).  Monitoring stations at high elevations, residing well above the nocturnal 

boundary layer, tend to exhibit lower variability than those situated in the urban areas, near large water bodies, and complex 

terrain due to the dominance of local conditions. 20 

3.2 Analysis of modeled ozone concentrations 

The analysis in the previous section quantified the inherent stochastic variability represented by the SY component using long-

term records of ozone observations. In this section, we analyze long-term records of model simulations in an attempt to quantify 

the error associated with not explicitly representing stochastic variations in atmospheric dynamics and emission variability in 

the current generation regional air quality models. The model simulations were performed with the fully coupled WRF-CMAQ 25 

system with a 36-km horizontal grid cell size and covered the 21-year period from 1990 to 2010 (Gan et al., 2015). To provide 

an illustration of the differences between observed and modeled time series over this period, Figure 5a displays a scatter plot 

of the strength of the SY component vs. the mean of the baseline (BL) component for both observations and model simulations 

at the Altoona, PA site.  While both observations and WRF-CMAQ simulations show a strong correlation between these two 

variables, it is evident that at this monitoring location the standard deviation (i.e., strength) of the SY component is substantially 30 

lower for the WRF-CMAQ simulations for a given mean of the BL component (i.e., for any given year).  The year-to-year 

variation in the observed and modeled mean of BL and strength of SY forcing, displayed in Fig. 5b, reveals that the model 

overestimated BL and underestimated the strength of SY forcing. The 36-km grid may be better reproducing the large-scale 
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synoptic forcing associated with the translation of weather systems than the meso-scale weather and urban influences that are 

embedded in the observed SY component. Meteorological modeling with higher horizontal grid resolution might be able to 

capture the land-sea breeze, lake-sea breeze, and terrain influences that observations are seeing at certain monitoring locations. 

 

An understanding of the expected error even when the model’s physics, chemistry, numerical solver, and the input data are 5 

“perfect” would help model developers in making decisions on model improvements.  To this end, we assume that the model 

perfectly reproduces the ‘true’ BL depicted by the observed BL.  We then use this ‘perfect’ modeled BL and reconstruct 

‘pseudo-simulated’ ozone time series, similar to what was done in Fig. 2, except for using the SY component from the 21 years 

of coupled WRF-CMAQ simulations. Fig. 6a shows the CDF of actual observed ozone (red line) overlaid on 21 pseudo-

simulated ozone CDFs (blue lines) at the Altoona, PA site while Figs. 6b and 6c display absolute and normalized performance 10 

metrics. Figure 6a confirms that the coupled WRF-CMAQ SY components have less intra-annual (sub-seasonal) variability 

than observed SY components, causing an overestimation at the low end and an underestimation at the high end of the observed 

CDF for all 21 years of reconstruction; these results imply that the model’s results at the upper and lower percentiles will 

always tend to be unreliable or prone to large errors even when the baseline concentration is predicted perfectly. The U-shape 

of the absolute and relative error curves in Figures 6b and c is similar to the corresponding curves in Figure 2, but the larger 15 

magnitude at the high and low end of the distribution indicates that the effects of the underestimated intra-annual (sub-seasonal) 

SY variability (note that the distribution of modeled values in Fig. 6a is much flatter (i.e., having higher Kurtosis) than that of 

the observations) outweigh those errors attributable to the stochastic variability presented in Figure 2. The shape of the absolute 

and normalized bias curves deviates from those shown for the pseudo-observations in Figures 2b-c and, thus, also reveals the 

effect of the underestimation of the sub-seasonal SY variability.  Figures 6d-f present differences between the curves shown 20 

in Figures 6a-c and a version of Figure 2a-c computed from 1990-2010 rather than 30+ years of observations. Panels e and f 

show that at the 50th percentile, the differences in the error curves are close to zero due to the fact that both the pseudo-

simulations and pseudo-observations used the same observed BL component. At the upper percentiles, the differences reach 3 

– 5 ppb, providing an estimate of the reducible error in simulating extreme values at this location because of the differences in 

the observed and WRF-CMAQ SY components at this location; high-resolution meteorological modeling may help address 25 

these reducible errors. 

 

Figs. 7a and 7b show the RMSE at the median and 95th percentile for the ‘pseudo-simulated’ ozone values at each monitoring 

site.  For the 50th percentile, the RMSE values range from 0.2 ppb to 3.2 ppb over CONUS with a median value of 1 ppb while 

at the 95th percentile, the RMSE values range from 1 ppb to 14.9 ppb with a median value of 3.8 ppb across all sites over 30 

CONUS.  The values are highest along the California coast and near Great Lakes, possibly due to errors in boundary conditions 

and inadequacies in simulating the land-sea breeze and land-lake breeze regimes, respectively, with modeling at 36 km grids.  

As model improvements are made, one can quantitatively assess how close the predictions of the improved model are to the 
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expected or target RMSE at each monitoring site for each percentile for the given base year simulation (see Fig.4a and b for 

expected errors from “perfect” models with “perfect” input at the median and 95th percentile). 

4 Conclusions 

Weather is a stochastic process that impacts the prediction of air pollutants, and regardless of how accurate the regional air 

quality model is, this stochastic component cannot be consistently reproduced.  In this study, we demonstrate how to quantify 5 

this irreproducible stochastic component by isolating the synoptic forcing imbedded in 30+ years of historical observations 

and assess the performance of the 36 km fully coupled WRF-CMAQ model in simulating 21 years of ozone concentrations 

over CONUS.  Observation-based analysis reveals that on average, the irreducible error attributable to the stochastic nature of 

the atmosphere ranges from ~2 ppb at the 50th percentile to ~ 5 ppb at the 95th percentile.  To improve regional-scale ozone air 

quality models, attention should be paid to accurately simulate the baseline concentration by focusing on the quality of the 10 

emission inventory and the model’s treatment for the slow-changing atmospheric processes. Also, errors in reproducing the 

sub-seasonal variability can possibly be reduced with high-resolution meteorological modeling.  Nonetheless, these results 

demonstrate the presence of large variability in the upper tail of the DM8HR O3 concentration cumulative distribution even 

with “perfect” models using “perfect” input data. Having this quantitative estimation of practical limits for model’s accuracy 

helps in objectively assessing the current state of regional-scale air quality models, measuring progress in their evolution, and 15 

providing meaningful and firm targets for improvements in their accuracy relative to measurements from routine networks. 

 

Code availability: Source code for version 5.0.2 of the Community Multiscale Air Quality (CMAQ) modeling system can be 

downloaded from https://github.com/USEPA/CMAQ/tree/5.0.2. For further information, please visit the U.S. Environmental 

Protection Agency website for the CMAQ system: https://www.epa.gov/cmaq. 20 

 

Data availability: All ozone observations used in this article are available from 

https://aqs.epa.gov/aqsweb/airdata/download_files.html (AQS). Paired ozone observation and CMAQ model data used in the 

analysis will be made available at https://edg.epa.gov/metadata/catalog/main/home.page. Raw CMAQ model outputs are 

available on request from the U.S EPA authors.  25 
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List of Figures 

Figure 1a. Observed DM8HR ozone time series (blue line) and the embedded baseline (black line) at Altoona, PA in 2010; 

Figure 1b. Time series of synoptic forcing (black line) and time series of Gaussian white noise (blue line) having the same 

variance as SY forcing. 

 5 

Figure 2a: Comparison between the observed cumulative distribution function (CDF) shown in red with 30+ pseudo-

observations CDFs generated from historical DM8HR ozone time series shown in light blue at a suburban site (420130801) at 

Altoona in PA. The dark blue line represents the average of the 30+ light blue lines; Figure 2b: Display of various statistical 

metrics derived by comparing the actual observed and pseudo ozone values in Fig. 2a; Figure 2c: Normalized statistical metrics. 

Notice the large variability occurring at the lower and upper percentiles. 10 

 

Figure 3. Box plots of statistical metrics based on the results from the analysis of DM8HR data at 185 monitoring sites.  See 

data analysis procedures using the ozone baseline observed in the year 2010 as the target BL in equations 7 and 8 of Luo et al. 

(2019). 

 15 

Figure 4. Spatial distribution of the lower bound for the RMSE or expected RMSE at each monitoring site over CONUS (a) at 

the median and (b) at the 95th percentile. 

 

Figure 5. (a) Scatter plot of the standard deviation (i.e., strength) of the SY component vs. the mean of the baseline (BL) 

component for each of the 21 years from 1990 to 2010 at the Altoona, PA monitoring site. Observations are shown in blue 20 

while WRF-CMAQ results are shown in red. (b) Inter-annual variability in the mean of the baseline component and standard 

deviation of the synoptic component in the WRF-CMAQ model and observations at the Altoona, PA site.  Although year-to-

year variation is captured, the model has overestimated the baseline forcing and underestimated the synoptic forcing. 

 

Figure 6.  a) Comparison between the observed CDF overlain on 21 ‘pseudo-simulated’ or reconstructed ozone CDFs generated 25 

from modeled DM8HR ozone time series at a suburban site (420130801) at Altoona in PA; b) Display of various statistical 

metrics derived by comparing the actual observed and pseudo-simulated ozone values in Fig. 6a; 5) Normalized statistical 

metrics; d).Difference between the pseudo-simulated CDFs shown in Figure 6a and the pseudo-observed CDFs as shown in 

Figure 2a but calculated from 21 years of observations only. The light blue lines represent the differences for a specific SY 

year while the thick blue line represents the differences between the means of the 21 reconstructions; e) Difference between 30 

the absolute performance metrics for pseudo-simulations shown in Figure 6b and those calculated for pseudo-observations as 

shown in Figure 2b but calculated for 21 years only. f) As in panel e) but for normalized performance metrics. 
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Figure 7. Errors attributable to the different synoptic forcings in model results at (a) the median and (b) 95th percentile.   
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Figure 1a. Observed DM8HR ozone time series (blue line) and the embedded baseline (black line) at Altoona, PA in 2010; Figure 

1b. Time series of synoptic forcing (black line) and time series of Gaussian white noise (blue line) having the same variance as SY 

forcing. 
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Figure 2a: Comparison between the observed cumulative distribution function (CDF) shown in red with 30+ pseudo-observations 

CDFs generated from historical DM8HR ozone time series shown in light blue at a suburban site (420130801) at Altoona in PA. The 

dark blue line represents the average of the 30+ light blue lines; Figure 2b: Display of various statistical metrics derived by 

comparing the actual observed and pseudo ozone values in Fig. 2a; Figure 2c: Normalized statistical metrics. Notice the large 5 
variability occurring at the lower and upper percentiles. 
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Figure 3. Box plots of statistical metrics based on the results from the analysis of DM8HR data at 185 monitoring sites.  See data 

analysis procedures using the ozone baseline observed in the year 2010 as the target BL in equations 7 and 8 of Luo et al. (2019). 
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Figure 4. Spatial distribution of the lower bound for the RMSE or expected RMSE at each monitoring site over CONUS (a) at the 

median and (b) at the 95th percentile. 

  5 

https://doi.org/10.5194/acp-2019-642
Preprint. Discussion started: 30 August 2019
c© Author(s) 2019. CC BY 4.0 License.



 

18 

 

 

 

 
 

 

Figure 5. (a) Scatter plot of the standard deviation (i.e., strength) of the SY component vs. the mean of the baseline (BL) component 

for each of the 21 years from 1990 to 2010 at the Altoona, PA monitoring site. Observations are shown in blue while WRF-CMAQ 

results are shown in red. (b) Inter-annual variability in the mean of the baseline component and standard deviation of the synoptic 5 
component in the WRF-CMAQ model and observations at the Altoona, PA site.  Although year-to-year variation is captured, the 

model has overestimated the baseline forcing and underestimated the synoptic forcing.  
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Figure 6.  a) Comparison between the observed CDF overlain on 21 ‘pseudo-simulated’ or reconstructed ozone CDFs generated 

from modeled DM8HR ozone time series at a suburban site (420130801) at Altoona in PA; b) Display of various statistical metrics 

derived by comparing the actual observed and pseudo-simulated ozone values in Fig. 6a; 5) Normalized statistical metrics; 

d).Difference between the pseudo-simulated CDFs shown in Figure 6a and the pseudo-observed CDFs as shown in Figure 2a but 

calculated from 21 years of observations only. The light blue lines represent the differences for a specific SY year while the thick 5 
blue line represents the differences between the means of the 21 reconstructions; e) Difference between the absolute performance 

metrics for pseudo-simulations shown in Figure 6b and those calculated for pseudo-observations as shown in Figure 2b but 

calculated for 21 years only. f) As in panel e) but for normalized performance metrics.  
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Figure 7. Errors attributable to the different synoptic forcings in model results at (a) the median and (b) 95th percentile. 
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